Rectifier Module for Three Phase Power Factor Correction

Preliminary data

Part name (Marking on product)
VUI30-12N1

Features:

- NPT IGBT with low saturation voltage
- Fast recovery epitaxial diodes (FRED)

Application:

Three phase rectifier with power factor correction, set up as follows:

- input from three phase mains
- wide range of input voltage
- mains currents approx. sinusoidal in phase with mains voltage
- topology permits to control overcurrent such as in case of input voltage peaks
- output
- direct current link
- buck type converter - reduced output voltage
- possibility to supply boost converter, inverter etc.
- required components
- one power semiconductor module per phase
- one inductor and one capacitor per
phase on mains side
- output inductor, depending on supplied circuit

Typ. Rectified Mains Power
$P_{n}=15 \mathrm{~kW}$ at

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{n}}=400 \mathrm{~V} 3 \sim \\
& \mathrm{f}_{\mathrm{T}}=15 \mathrm{kHz} \\
& \mathrm{~T}_{\mathrm{C}}=80^{\circ} \mathrm{C}
\end{aligned}
$$

Transistor T

Ratings

Symbol	Definitions	Conditions	min.	typ.	max.	Unit
$\mathrm{V}_{\text {ces }}$	collector emitter voltage	$\mathrm{T}_{\mathrm{vj}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$			1200	V
$\mathrm{V}_{\text {GES }}$	DC gate voltage	continuous	-20		+20	V
$\begin{aligned} & \mathbf{I}_{\mathrm{C} 25} \\ & \mathbf{I}_{\mathrm{CB0}} \end{aligned}$	collector current	DC $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ DC $\mathrm{T}_{\mathrm{C}}=80^{\circ} \mathrm{C}$			$\begin{aligned} & 95 \\ & 65 \end{aligned}$	A
$\mathbf{V}_{\text {CE(sat) }}$	collector emitter saturation voltage	$\begin{array}{ll}\mathrm{I}_{\mathrm{C}}=20 \mathrm{~A} ; \mathrm{V}_{\mathrm{GE}}=15 \mathrm{~V} & \mathrm{~T}_{\mathrm{VJ}}=25^{\circ} \mathrm{C} \\ & \mathrm{T}_{\mathrm{VJ}}=125^{\circ} \mathrm{C}\end{array}$		$\begin{aligned} & 1.7 \\ & 1.9 \end{aligned}$	2.0	V
$\mathrm{V}_{\text {GE(th) }}$	gate emitter threshold voltage	$\mathrm{I}_{\mathrm{C}}=2 \mathrm{~mA} ; \mathrm{V}_{\mathrm{GE}}=\mathrm{V}_{\mathrm{CE}} \quad \mathrm{T}_{\mathrm{VJ}}=25^{\circ} \mathrm{C}$	4.5		6.5	V
$\mathrm{I}_{\text {CES }}$	collector emitter leakage current	$\begin{array}{ll}\mathrm{V}_{\text {CE }}=\mathrm{V}_{\text {CES }} ; \mathrm{V}_{\mathrm{GE}}=0 \mathrm{~V} & \mathrm{~T}_{\mathrm{VJ}}=25^{\circ} \mathrm{C} \\ & \mathrm{T}_{\mathrm{VJ}}=125^{\circ} \mathrm{C}\end{array}$		1.8	1.6	$\overline{\mathrm{mA}} \mathrm{~mA}$
$\mathrm{I}_{\text {GES }}$	gate emitter leakage current	$\mathrm{V}_{\mathrm{CE}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{GE}}= \pm 20 \mathrm{~V}$			400	nA
$\begin{aligned} & \mathbf{t}_{\mathrm{d}(\mathrm{on})} \\ & \mathbf{t}_{\mathrm{r}} \\ & \mathbf{t}_{\text {d(off) }} \\ & \mathbf{t}_{\mathbf{f}} \\ & \mathbf{E}_{\text {on }} \\ & \mathbf{E}_{\text {offf }} \\ & \hline \end{aligned}$	turn-on delay time current rise time turn-off delay time current fall time turn-on energy per pulse turn-off energy per pulse	$\begin{aligned} & \text { inductive load } \quad \mathrm{T}_{\mathrm{V} J}=125^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CE}}=600 \mathrm{~V} ; \mathrm{I}_{\mathrm{C}}=20 \mathrm{~A} \\ & \mathrm{~V}_{G E}= \pm 15 \mathrm{~V} ; \mathrm{R}_{\mathrm{G}}=22 \Omega ; \mathrm{L}=100 \mu \mathrm{H} \end{aligned}$		$\begin{array}{r} 100 \\ 70 \\ 500 \\ 70 \\ 3.0 \\ 2.2 \\ \hline \end{array}$		ns ns ns ns mJ mJ
$\mathrm{C}_{\text {ies }}$	input capacitance	$\mathrm{V}_{\text {CE }}=25 \mathrm{~V} ; \mathrm{V}_{\mathrm{GE}}=0 \mathrm{~V} ; \mathrm{f}=1 \mathrm{MHz}$		3.3		nF
$\mathbf{Q}_{\text {Gon }}$	total gate charge	$\mathrm{V}_{C E}=600 \mathrm{~V} ; \mathrm{V}_{\mathrm{GE}}=15 \mathrm{~V} ; \mathrm{I}_{\mathrm{C}}=50 \mathrm{~A}$		240		nC
$\begin{aligned} & \mathrm{I}_{\mathrm{CM}} \\ & \mathbf{V}_{\mathrm{CEK}} \\ & \hline \end{aligned}$	reverse bias safe operating area	RBSOA; $\mathrm{V}_{\mathrm{GE}}= \pm 15 \mathrm{~V} ; \mathrm{R}_{\mathrm{G}}=22 \Omega ; \mathrm{L}=100 \mu \mathrm{H}$ clamped inductive load; $\quad \mathrm{T}_{\mathrm{VJ}}=125^{\circ} \mathrm{C}$		$\begin{gathered} 100 \\ s-L_{s} \cdot d_{1} \end{gathered}$		A
$\begin{aligned} & \hline \mathbf{t}_{\mathrm{sc}} \\ & \text { (SCSOA) } \end{aligned}$	short circuit safe operating area	$\begin{array}{ll} \mathrm{V}_{\mathrm{CE}}=\mathrm{V}_{\mathrm{CEE}} ; \mathrm{V}_{\mathrm{GE}}= \pm 15 \mathrm{~V} ; & \mathrm{T}_{\mathrm{VJ}}=125^{\circ} \mathrm{C} \\ \mathrm{R}_{\mathrm{G}}=22 \Omega ; \text { non-repetitive } & \\ \hline \end{array}$			10	$\mu \mathrm{s}$
$\mathrm{R}_{\text {thJc }}$	thermal resistance junction to case				0.3	K/W
$\mathbf{R}_{\text {thJH }}$	thermal resistance case to heatsink	with heat transfer paste, see mounting instructions		0.6		K/W

Diodes D1 - D4						
Symbol	Conditions			Ratings		
				typ.	max.	
$\mathrm{V}_{\text {RRM }}$	repetitive reverse voltage		$\mathrm{T}_{\mathrm{V},}=25^{\circ} \mathrm{C}$		1200	V
$\begin{aligned} & \mathbf{I}_{F 25} \\ & \mathbf{I}_{\mathrm{FB80}} \end{aligned}$	collector current		$\begin{aligned} & \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{C}}=80^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 40 \\ & 25 \end{aligned}$	A
I_{B}	reverse current	$\begin{aligned} & V_{R}=V_{\text {RRM }} \\ & V_{R}=0.8 \cdot V_{\text {RRM }} \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{vJ}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{vJ}}=125^{\circ} \mathrm{C} \end{aligned}$	2	0.75	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
$V_{\text {F }}$	forward voltage	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~A}$	$\begin{aligned} & \mathrm{T}_{\mathrm{v}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{vj}}=125^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 2.2 \\ & 1.9 \\ & \hline \end{aligned}$	2.4	V
$\begin{aligned} & \mathrm{I}_{\mathrm{RM}} \\ & \mathrm{t}_{\mathrm{rr}} \end{aligned}$	reverse recovery current reverse recovery time		$\mathrm{T}_{\mathrm{V},}=125^{\circ} \mathrm{C}$	$\begin{array}{r} 16 \\ 400 \end{array}$		A ns
$\mathrm{R}_{\text {thuc }}$	thermal resistance junction to case	per diode	$\mathrm{T}_{\mathrm{V},}=25^{\circ} \mathrm{C}$		1.3	K/W
$\mathrm{R}_{\text {thJH }}$	thermal resistance case to heatsink	with heat transfer paste	$\mathrm{T}_{\mathrm{V},}=25^{\circ} \mathrm{C}$	2.6		K/W

Module

Detail "X" M2:1

Product Marking

Ordering	Part Name	Marking on Product	Delivering Mode	Base Qty	Ordering Code
Standard	VUI30-12N1	VUI30-12N1	Box	10	487554

